

GALACTIC - High Performance Alexandrite Crystals and Coatings for High Power Space Applications

P. Weßels^{1*}, S. Unland¹, R. Kalms¹, S. Spiekermann¹, I. Balasa¹, H. Mädebach¹, S. Kramprich¹, L. Jensen¹, D. Kracht¹, M. Lorrai², P.G. Lorrai², M. Hmidat², J. Butkus³, L. Lukoševičius³, J. Neumann¹

¹Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany; ²Optomaterials S.r.I., Via Antioco Loru 15, 09125 Cagliari, Italy; ³Altechna Coatings, Gostauto 12, 01108 Vilnius, Lithuania; *contact: p.wessels@lzh.de

Improvement of

crystal arowth

parameters

Spaceborne Earth observation via LIDAR instruments requires new laser systems to gain deeper insight in large-scale atmospheric dynamics, improve the climate modelling and enhance the monitoring of the planet's surface regarding the impact of climate change. Space-gualified Alexandrite crystals with optical interference coatings optimized for high laser-induced damage thresholds as laser-active media can overcome current limitations by providing wavelength tunability, short pulses and high optical efficiency if pumped by state-of-the-art laser diodes [1].

Project overview

- Laser Zentrum Hannover e.V. (Germany) → Project coordinator, laser development
- Optomaterials S.r.l. (Italy) → Alexandrite crystal manufacturing
- Altechna Coatings (Lithuania) → Coating deposition, surface treatment
- Project goals:
- Push the Alexandrite laser crystal technology within the EU up to Technology Readiness Level (TRL) 6
- Establish a European-based supply chain for high-quality functionally coated Alexandrite laser crystals

Fig. 1: Enhance standard Alexandrite crystals (currently TRL 4) to achieve space-aualified, high-auality components with TRL 6.

Laser demonstrator setups Two laser demonstrators are derived from possible Earth observation space missions: LIDAR for atmospheric sensing → System 1 Altimetry, vegetation monitoring → System 2 aser diode N/4 OC 1/4 м Fig. 5: Principle sketch of diode-pumped Alexandrite laser setups: System 1 (left), System 2 (right), PO: Pump Optics, M: Mirror, TFP: Thin Film Polarizer, IC/OC: Input/Output Coupler, FL: Focusing Lens

Measurement of

- doping concentration mechanical specifications (dimensions, perpendicularity, parallelism, bevels)
- surface quality (scratch-dig) surface flatness and wavefront
- distortion spectral properties (absorption.
- transmission, XRD and Raman)

Laser parameters

	-	
	System 1 high E _{puls} / low f _{rep}	System 2 low E _{puls} / high f _{rep}
Pulse energy E _{puls}	> 3 mJ	≥ 200 µJ
Pulse duration	≈ 100 ns	< 10 ns
Repetition rate f _{rep}	50-500 Hz	≥ 5 kHz
Laser wavelength	750-770 nm	750-770 nm
Table 2: Intended output parameters of the two demonstrators.		
Qualification test campaign		
Define	TRL 6 relevant ivironment	
Temperature	Radiation te	ests

Optical interference coatings

Fig. 4: Schematic diagram showing the plasma etching process (left) performed with the ClusterLine RAD sputter platform (right).

- Optimization of
- coating design coating process
- and materials
- surface treatment (ultrasonic cleaning, plasma etching)
- HR / HT coating

DAR coating AR < 1 % @ 638 ± 20 nn AR < 0.25 % @ 760 ± 20 nm

Verification via

and absorption

measurements

• LIDT test (R-on-1

and raster scan)

transmission

tape-lift test

Table 1: Coating specifications for two different crystal parts: a) HR/HT on S1, DAR on S2, b) DAR on S1 and S2, AOI = 0° each.

Thermal cycling			
Fig. 7: Schematic test sequence (left), climate chamber (right).			
Parameters of temperature durability test:			
 Test range: -30 °C to +130 °C 			
Hold times: 2 h			
 Rate of change: < 2.2 K/min 			
No. of cycles: 3 hot and 2 cold cycles			
 Ambient pressure, non-condensing env. 			
Irradiation testing			
Gamma irradiation: Proton irradiation:			
Dose level: 10 krad 30 krad Solution: Flux: 10 ¹² protons/cm ² with 8 and 70 MeV			
Dose rate: 4 krad/h equivalent protons			

The Horizon 2020 project GALACTIC [2, 3] will pass through the following four steps to setup the European-industry-based supply chain for space-qualified Alexandrite crystals:

Develop advanced Alexandrite crystal growth and surface treatment processes

Coatings

- Design and characterize advanced optical interference coatings
- Demonstrate the crystal performance in typical laser configurations
- Qualify the coated crystals according to TRL 6

Enable non-dependence of Europe on Alexandrite laser crystal and coating technologies for space applications.

References:

[1] M. J. Damzen et al., Progress in diode-pumped alexandrite lasers as a new resource for future space lidar missions, ICSO 2014

Alexandrite test crystals

- [2] Cordis Europa, Horizon 2020, Fact Sheet, https://cordis.europa.eu/project/id/870427
- [3] GALACTIC website: https://h2020-galactic.eu/

Altechna

Project partners:

Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 870427.

